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Abstract

In many complex flows, large-eddy simulation is difficult due to the simulta-
neous presence of a variety of flow features, often with quite different resolution
requirements. For example, a typical flow over an airfoil near maximum lift in-
cludes laminar, transitional, and turbulent boundary layers, flow separation,
unstable free shear layers and a wake. In such situations, unstructured-grid
methods can gain great efficiencies over structured-grid methods (factor of 27)
by placing points based on local resolution requirements, rather than along lines
(as is required with structured-grid methods). For this reason, unstructured-
grid large-eddy simulation techniques are being developed using the fiuite ele-
ment method to solve the compressible Navier-Stokes equations with a dyuamic
model of the subgrid-scale stresses. As the purpose of this report was to sup-
port graduate student education, the bulk of this report is taken from the work
of the student supported by this research (Andres Tejada-Martinez) . That
student has focused on the characterization of filters used within the dynamic
subgrid-scale model for large eddy simulation. Though he is not quite finished,
this report clearly shows that much was learned under the three years of support
by the AFOSR. This grant also allowed partial support for Michael Yaworski.
He is currently finishing his masters in RANS simulations and will go on to
link Andres work to combined LES/RANS models. We have decided to present
only Andres work here in the interest of completeness and compactness.



1 Introduction

Large-eddy simulation (LES) is a technique for computation of turbulent flows
where the large-scale component of the flow, carrying most of the energy, is
resolved by the computational method, and the small-scale field motions are
modeled. Previous to LES, the two major approaches to simulating turbulent
flows were Direct Numerical Simulation (DNS) and Reynolds-Averaged Navier-
Stokes Simulation (RANSS). In DNS, the computational method resolves all of
the turbulent motions from the largest scale down to the scale where motion
is converted to heat via viscous dissipation. It is well known that DNS is lim-
ited to low Reynolds number flows due to the increasing range of small scales
with increasing Reynolds number. In RANSS, the space-time computational
grid is too coarse to resolve the flow instabilities that lead to and characterize
turbulence. The grid is only fine enough to resolve the mean flow, thereby
requiring some type of modeling of the statistical effects of all turbulent fluctu-
ations on the mean flow. LES is a compromise between DNS and RANSS. The
computational grid is sufficiently fine to resolve some flow instabilities, but not
fine enough to resolve the energy-dissipating motions. The idea behind LES
is that motions that are resolved are the important ones and the errors in-
duced by modeling the small-scale motions are significantly smaller than those
incurred in RANSS. The constant coefficient Smagorinsky model (see [15]),
analogous to the linear viscosity model in RANSS, is often used to account for
the un-resolved small-scale motions. A more accurate procedure is often used
in which the constant coefficient model becomes a dynamic coefficient model
as the model coefficient is no longer taken as constant but allowed to vary in
space and time.

Over the past three decades, a significant amount of research has been
devoted to LES beginning with Lilly [7] who adopted LES to predict flows in
the field of Meteorology. The overwhelming majority of this research has been
carried out with spectral or structured grid finite difference methods. However,
recently LES has been extended to finite element methods on unstructured
grids (see [4]). This extension not only facilitates simulation of flows within or
around complex geometries, but also allows great reductions in computational
effort through the ability of unstructured grids to adapt locally to resolve fine-
scale flow structures in one flow region while remaining coarse in other regions
where the flow structures are large.

The purpose of this report is to investigate the extension of LES to finite
elements by focusing on the intricacies arising from such a task. In Section
2, we present classical definitions of spatial filters along with their relevant
characteristics for LES. In Sections 3 and 4, we review the filtered Navier-Stokes
equations (which govern the large-scale component of the flow) along with the
dynamic coefficient Smagorinsky model required to represent unknowns in the
filtered equations generated by a filtering operation. In Section 5, we discuss
discrete filters which arise when the modeled filtered Navier-Stokes equations
are solved using finite elements, and furthermore we introduce new filters which
make use of the basis functions underlying the numerical method, referred to
as finite dimensional filters. Finally, in Section 6 we test our discrete and finite
dimensional filters by performing large-eddy simulations of decaying isotropic



turbulence and comparing the results with experimental data.

2 Filtering

In the large-eddy simulation (LES) of turbulent flows, the larger unsteady tur-
bulent motions (or eddies) are directly represented, whereas the effects of the
smaller-scale motions are modeled. There are four conceptual steps in LES:

1. A filtering operation is defined to decompose the velocity u(z,t) into the
sum of a filtered (or resolved) component &(z,t) and a residual or subgrid
scale (SGS) component u'(x,t). The filtered component represents the
motions of the large eddies.

2. The evolution equations for the filtered velocity field are derived from the
Navier-Stokes equations. These equations are of the same form as the
Navier-Stokes equations, with the momentum equation containing an un-
known residual (SGS) stress tensor that arises from the residual motions.

3. Closure is obtained by modeling the residual stress tensor; in our case,
the dynamic coefficient Smagorinsky model is used.

4. The modeled filtered equations are solved numerically for @(x,t), which
provides an approximation to the large-scale motions of the turbulent
flow.

The general filtering operation, introduced to LES by Leona;d [6], is defined as
a(e,) = [ Gla,y) u(w,1) dy, (1)

where integration is over the entire flow domain. The filter kernel G(z,y),
located at y = , is chosen to have small compact support in y thereby reducing
the region of integration to be much smaller than the flow domain. The simplest
filter kernels are spatially homogeneous, symmetric in y about & (leading to
the expression of G as G(jz — y|)), and are required to satisfy the following
normalization condition:

/ G(r) dr =1, ()

guaranteeing that the filtering operation preserves constants. Homogeneity
simply refers to the fact that the shape of the kernel remains constant as we
move the point y = z.

Symmetric filter kernels can be defined in one dimension. The extension
to the three dimension vector case is straight forward. Two commonly used
homogeneous, non-negative, symmetric filters are the box filter and the Gaus-
sian filter. Consider a random function f(z) characterized by high frequencies.
With the box filter, the filtered function f(z) is simply the average of f(z)
in the interval (z — A/2,z + A/2). Thus the box filter kernel takes on the
value of 1/A over the previously mentioned interval and is zero elsewhere. The
Gaussian filter kernel is the Gaussian distribution with mean zero and variance
0?2 = A?/12. This value of the variance was chosen by Leonard so as to match
the second moment of the Gaussian filter kernel to that of the box filter kernel.




A box or Gaussian filtered function f(z) follows the general trends of f(z),
but the short fluctuations of length scales smaller than A have been damped.
This admits a natural way of categorizing filters by their widths, taken as A.
Just like the Gaussian filter, other non-negative, symmetric filters are required
to match their second moments with that of the box filter, resulting in the
following general definition of their widths:

A= (12 /_ °; r2G(r) dr) v (3)

This definition is extensively discussed by Lund [9]. The previous formula will
be of interest to us when defining discrete filtering procedures for the dynamic
Smagorinsky model.

3 The filtered Navier-Stokes equations

The incompressible Navier-Stokes equations are

o _
oo (@)
Qﬂﬁ + Bujui = v 62u1- _ l?_p_
ot ' 0z; Oz;0z; poz’

where the first equation describes conservation of mass and the second equation
describes conservation of momentum in the i-th direction. As usual, u;(z,1) is
the component of the velocity field in the i-th direction, p(z,t) is the pressure,
p is the fluid density and v is the kinematic viscosity. Consider the appli-
cation of any homogeneous, symmetric filter with kernel G and of width A.
Consequently, the filtered Navier-Stokes equations are rendered as:

0w _ 4

Oz; (5)
ow  owm _ O 10p
ot oz; Oz;0z; poz;

As can be seen, the filtering operation commutes with differentiation, which is
brought about by the Lhomogeneity of the kernels in question. The equations in
(5) differ from the N=-. ier-Stokes equations because the filtered product u;u; is
different from the product of the filtered velocities @;%;. The difference is the
residual or subgrid scale stress tensor defined by

Tij = Uity — Uiy (6)
Expressing the deviatoric or traceless part of this tensor as

T =Tij — %‘Tkkdiﬁ (7)
and adding the trace of the residual stress tensor multiplied by the density to

the pressure as

|
P=p+p 37k (8)




the filtered momentum equation in (5) can be rewritten as

_@ Olj; 0%, 87':_17 19P
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If Tfj(a:, t) is given by a residual stress model, the filtered continuity equation
(the first equation in (5)) and the filtered momentum equation (9), herein
referred to as the filtered Navier-Stokes equations, can be solved to determine
@(z,t) and P(x, ).

In the case of compressible flows, the compressible Navier-Stokes equations
are filtered using a generalized filtering procedure known as Favre (or density
weighted) filtering. The interested reader is encouraged to consult Moin et al
[10].

4 The dynamic Smagorinsky model

The filter applied to the Navier-Stokes equations is meant to remove the small
scales of motion. Motion is converted to heat via viscous dissipation at the
smallest of these small scales. Thus, the dissipation of motion must be modeled
due to the absence of the smallest scales. Fortunately, by Kolmogorov’s first
hypothesis (see [12]), the behavior of the absent smallest (or Kolmogorov) scales
is universal, and as a result, it should be possible to construct a model applicable
to all types of lows. A simple model was proposed by Smagorinsky [15] to
account for the dissipation of motion. Smagorinsky expressed the deviatoric
portion of the residual stress tensor as

8 = —2(CA)?|5|5y, (10)

where C is the Smagorinsky coefficient, the filtered strain rate tensor is defined

as _ _
Sij = % <6u,- + %) , (11)

sz Bzi
and the norm of the filtered strain rate tensor is defined as

18] = (25;5:;)/%. (12)

Note that (10) is consistent in the sense that its left hand side and its right
hand are traceless. The previous model is valid only if the filter width, A,
is in the inertial sub-range. Scales in the inertial sub-range are larger than
the Kolmogorov scales, yet smaller than the scales which contain most of the
- energy. Moreover, the inertial sub-range scales are universal and, unlike the
Kolmogorov scales, are not affected by molecular viscosity. The reason for the
restriction on A is that, by construction, the Smagorinsky model represents all
the dissipation of motion occurring at the Kolmogorov scales. If some of these
scales are preserved by the filter, then the dissipation of motion occurring at
these scales will be accounted by the model as well. This is clearly incorrect.
A final characteristic of the Smagorinsky model is that it is not suitable to
represent the possible energy transfers from the removed Kolmogorov scales
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to the larger scales, a phenomenon known as backscatter. The reason for
such deficiency is that backscatter occurs on time scales smaller than those
represented by the model. Currently, we are implementing a model which can
exhibit backscatter, known as the Bardina mixed-scale model (see [16] and
19))).

One of the problems with the implementation of the Smagorinsky model
is that the appropriate value of the coefficient C is different in different flow
regimes. More precisely, it is zero in laminar flow, and it is attenuated near
walls compared to its value (C & 0.15) in high Reynolds number free turbulent
flows. To alleviate this deficiency of the constant coefficient model, Germano
[3] developed a procedure for calculating the coefficient locally. Consider the
application of a homogeneous, symmetric, secondary or test filter (with kernel
G and of width A > A in the inertial sub-range) to the once filtered Navier-
Stokes equations. As expected, the continuity and momentum equations take
the form: .

Ou;

Ox;

od; | owu; _ | 9% _10p

ot ' oz; 0z;0m; pom;

The residual stresses created by the application of the test filter are expressed
as

(13)

The successive application of two homogeneous filters of widths A and A re-
spectlvely, yields a homogeneous filter with kernel & and of width A > A
(see [12] and [17]). (see [16] and [18]). Thus the Smagorinsky model for the
deviatoric portion of the residual stresses in (14) takes shape as

1 AV21 814
TE =T, - §Tkk5ij = —2(CA)?|8|Sy;, (15)

where S;; and |S| are defined straightforwardly based on %. Moreover, C' is the
same constant appearing in (10), a consequence of Kolmogorov’s hypothesis
mentioned earlier.

An identity due to Germano is obtained by applying the test filter to (6)
and subtracting the result from (14):

Lij = Tij — ﬂ'j = Uy — Uy (16)

The significance of this identity is that L;; (called the resolved stress tensor)
is known in terms of %, whereas T;; and 7;; are not. Taking the Smagorinsky
coefficient as roughly constant in the neighborhood where the filter kernel is
non-zero, the relations in (10) and (15) lead to

Ld—Td “. = 2(CA)’M;;, (17)

where Ld is the deviatoric portion of L;;:

1
LY =Lij - 3Lkkdij, (18)




and .o

—_— A s
M;; = Islsij - (Z) 151Si;- (19)

The coefficient (CA)? cannot be chosen to match the six independent relations
n (17), but as shown by Lilly [8], the mean-square error is minimized by the
specification that

(20)

(CA)2 _ 1 Mingj _ l MijLij

2 MMy 2 MMy
The second equality in the previous expression arises from the fact that M;;
is traceless. Finally, both L;; and M;; are known in terms of @(z,t), thereby
completing the expression in (10).

The denominator and numerator in (20) are averaged over homogeneous
directions of the flow (i.e.,. directions over which mean quantities of the flow are
constant) resulting in a time dependent Smagorinsky coefficient as a function
of the directions in which the flow is not homogeneous. Averaging is an ad
hoc operation performed as a way to avoid instabilities. In some instances, the
fluctuations of M;; between negative and positive values result in a vanishing
of the denominator in (20). Furthermore, a negative value of (CA)? would
give rise to a parasitic transfer of energy from the modeled smallest scales to
the larger scales. We refer to this transfer of energy as parasitic because, as
mentioned earlier, the Smagorinsky model is not able to describe such transfers
(backscatter).

5 Test filtering

Before we begin our discussion on test filtering, it is necessary to mention
the numerical method used to solve the filtered Navier-Stokes equations. The
spatial discretization in our large-eddy simulations is brought about by the
Galerkin approximation to the weak form of the filtered Navier-Stokes equations
augmented by the Streamline Upwind Petrov-Galerkin (SUPG) stabilization,
herein referred to as the stabilized Galerkin approximation (see [4] and [18]).
The spatially discretized equations are advanced in time using the generalized-o
time integrator discussed in reference [5]. The stabilized Galerkin approxima-
tion involves the representation of the flow variables as a linear combination
of continuous piecewise polynomial basis functions of order p. In turn, these
velocity fields are used to calculate the dynamic model, which requires the test
filtering of numerous flow quantities including the product of two components
of the velocity (see (16)). For example, if p = 1 these flow quantities are prod-
ucts of the piecewise tri-linear linear velocity fields, thus they will be piecewise
tri-quadratics or higher.

5.1 The box filter as the test filter

Performing the filtering integrations using the box filter kernel (of width A = 2h
where h is the constant mesh spacing) integrated by different quadrature rules




Nodal point Quadrature point

Figure 1: A nodal point with neighboring quadrature points are depicted. Test filtered
quantities are calculated at the nodes.

admits a family of discrete approximations to a box filtered function evalu-
ated at a particular node in the mesh. In one-dimension, this family can be
represented as

J
Flzo) = Y Wif(z). (21)
i=—J

Here the filtered function f(z) is evaluated at a mesh node whose spatial lo-
cation is denoted as zy with neighboring quadrature points located at z; =
zo+ L1, x93 =0+ Lo, -,z5 =20+ Ly totherightandz_; = x0— Ly, 22 =
zg—Lo,+++,z_y = zg— Ly to the left, where the {L;} are constants determined
by the quadrature rule and the mesh spacing h.

The {L;} are representable in the form L; = a;h where 0 < o; < 1. Further-
more, the weights are non-negative, symmetric (i.e., W; = W_;), and satisfy
the condition ;

> Wi=1. » (22)
i=—J
Therefore, this family of discrete filters preserves constants. An example of a
discrete approximation to the box filter is given in Appendix I. The family of
discrete kernels corresponding to the family of discrete filters applied in (21)
can be expressed as

J
Glz—y)=h > Wiblz—y+a), (23)
i=—J
where a_; = —a; and 6(z) is the Dirac delta function. The previous relation

can be inserted into (3) to obtain a general expression for the filter width:

J 1/2
A=h (12 >, W,-af) . (24)

i=—J

It is important to note that the width of the discrete filters is proportional to the
mesh size h. Thus, if the mesh is too coarse, the width of these discrete filters
might be too wide for consistent calculation of the dynamic model. Recall that
the width of the test filter should be within the inertial sub-range discussed
earlier.



5.1.1 Discrete filtering in multi-dimensions

In the case where filtering is required in more than one dimension over any
topology, a box filtered function evaluated at node A is given as

fan) = —o= [ fwady. (25)

meas(24)

where Q4 is the union of elements which share node A. Here, the box filter
kernel has been generalized such that at node A it becomes

1

G(za,y) = ¢ meas(Q4)
0 otherwise.

if y isin Qgu (26)

In the case where filtering is performed over an evenly spaced quadrilat-
eral or hexahedral ruesh, quadrature approximations admit the sequential ap-
plication of the one-dimensional discrete filters in each of the three principal
directions. For example, in three dimensions we have

£(z0. 90, 20) Z Z Z WiW;Wi f (2,95, k), (27)

i=—J j=—J k=-J

where the {y;} and the {z;} are spaced in the same manner as the {z;} de-
fined earlier. Expanding the previous sum, the filtered function at the node
(2o, 0, 20) is seen to be given by a weighted combination of the function eval-
uated at neighboring quadrature points. The weights corresponding to each
point add up to unity. The width of the three dimensional filter in (27) is
defined as the width of its one dimensional counterpart.

In addition, it is possible to sequentially apply filters of different widths, for
which the width of the resulting filter is taken often as

A= (A1Aghs)"”, (28)

where A; is the width of the filter applied in the i-th direction. In the case of
elements with high aspect ratios, the width is taken as

A = max (AI,AQ,A3) . (29)

For a detailed discussion on when it is appropriate to use either of the two
previous expressions the reader is suggested to consult Deardoff [2] and Scotti
et al [13], [14].

As discussed before, the test filter must be homogeneous in order to derive
the dynamic model. Specifically, the test filter must be able to commute with
differentiation. Errors induced by the non-commutivity between differentiation
and discrete filtering operations such as (21) are of O(A?%) = O(h?), which is
the same order as the spatial and temporal discretizations in the flow solver.
A detailed discussion on the commutation errors of discrete filters is provided
by Vasilyev [16].

In the case where two or three dimensional filtering is performed using un-
structured (triangular, tetrahedral, non-uniform quadrilateral, or non-uniform

10



hexahedral) meshes, the generalized box kernel may not be symmetric; conse-
quently, its width may not be obtainable from the formula in (3). Furthermore,
in this case the box kernel may not be homogeneous, thus discrete approxima-
tions may induce large commutation errors. Later in this report we will show
that discrete approximations of box filter on uniform tetrahedral meshes can
work well in large-eddy simulations. In the near future we hope to show that
these non-homogeneous discrete filtering operations introduce negligible com-
mutation errors.

Furthermore, in the case of unstructured meshes, the quadrature rules used
to evaluate the filtering operation in (25) does not yield filtered functions rep-
resentable in the form of (27). However, still they result in a weighted combi-
nation of the function evaluated at the points surrounding that node at which
the filtered function is evaluated. By construciion, the weights corresponding
to these points are non-negative and satisfy the normalization condition.

5.2 Finite dimensional filters as test filters

We hope to perform large eddy-simulations using higher order hierarchic basis
functions in addition to the continuous piecewise linear basis functions cur-
rently used. The purpose for using higher order basis functions is to enable the
efficient, accurate representation of turbulent flows on coarse meshes. If we use
the box filter as the test filter in the same manner it was used in the previous
sub-section, the resulting filter width will be greater than the inertial sub-range
scales due to the coarseness of the meshes, thereby making the Smagorinsky
model invalid. Thus, we need to define a special class of filters such that their
widths fall on the inertial sub-range even on coarse meshes. For this, we make
use of ideas discussed by Leonard [6] and Pope [11], who envision a filtered
function as a finite dimensional projection of an infinite dimensional function.

Once again, consider a random function f(z) characterized by high frequen-
cies. The motivation for using finite dimensional projections of f(z) as filters
is that they can represent f(z) up to certain scales. More precisely, the higher
the order of the basis functions spanning the space being projected onto, the
better the projected function can represent the smaller scales of f(z). Such
projections can be expressed as

R N
7= andnl™), (30)
n=1

where the members of the set {¢,})_, are continuous piecewise polynomial
basis functions and the set of coefficients {an(z)}Y.; are to be determined.

5.2.1 Piecewise polynomial interpolations

One family of filters can be obtained by selecting the set of coefficients {a}Y,
such that the filtered function interpolates the original function through N pre-
determinefi points. As an example of this type of filters, we take the filtered
function f(z) to be the piecewise linear polynomial interpolating the original

11




. . Unfiltered function
Filtered function

/

Nodal point
Figure 2: The effect of filtering using the kernel in (32) is shown.

function f(z) through the mesh nodes:
N
f= Z fndn(2), (31)
n=1

where f, = f(z,), N is the number of nodes in the mesh, and the set {¢n ()},
consists of the Lagrangian continuous piecewise linear basis functions. The ker-
nel associated to this filtering operation can be written as

N
Glz,y) =Y 8(y — n)¢n(2). ‘ (32)
n=1

Notice that this kernel is similar to those in (21), except that instead of constant
weights it has variable weights. The homogeneity and symmetry of the kernel
in (32) is still in question. However, this kernel works well in the large-eddy
simulation of decaying isotropic turbulence. Similar to the generalized box filter
on hexahedral (or quadrilateral) elements, we hope to show that the filtering
operation brought about by (30) introduces negligible commutation errors.

A disadvantage in using kernels such as the one in (32) to compute the
dynamic model coefficient in (20) is that gradients of the solution at mesh nodes
are not continuous when the solution is piecewise linear or any other piccewise
polynomial. However, we can overcome this obstacle by assuming that the
required gradients at mesh nodes are averages over surrounding elciaents.

5.2.2 Least-squares (L;) projections

A second family of filters can be obtained by determining the set of coefficients
{an}N_; in (30) such that they minimize the square of the Ly-norm of the
difference between the filtered and original functions over the domain of interest:

r=1 [ (@ - f@) d, (39

where L is the distance of our domain. By substituting (30) into (33) and
differentiating with respect to the {an}, it is seen that the coefficients satisfy

12




the matrix equation

N
Z Bmnn = Um, (34)
n=1

with

1 L
Bmn = z/ ¢m(z)¢n(z) dz, (35)
0
and
1 L
=7 [ #nl@)f(@) dz. (36)
0
The family of filters in question admits the following family of kernels:
. N N
G(z,y) =Y, Y Buntal@)dm(y), (37)
n=1 m=1

where Bl denotes the m-n entry of the inverse of the Gram (mass) matrix
B. 1t is important to note that the minimization of the integral in (33) could
be performed over each mesh element, instead of the flow domain. In this case,
the resulting filtered field would be discontinuous across elements.

Although the widths of the finite dimensional filters proposed are unclear,
it should reflect the polynomial order of the basis functions employed. Clearly,
higher order basis functions would yield smaller filter widths. Thus, unlike
discrete filter widths, which are solely proportional to the mesh size, finite
dimensional filter widths should depend on the chosen basis functions as well.

6 LES of Decaying Isotropic Turbulence
6.1 Decaying Isotropic Turbulence

Before moving on to a discussion of numerical results, let us take some time
to review the essential aspects of our test problem. Under certain conditions,
large-scale motions can become turbulent. In other words, the large-scale mo-
tions become unstable and break into smaller scale motions which take energy
from the larger ones. Energy is passed down to such small scales at which it is
dissipated by the action of molecular viscosity. At high enough Reynolds num-
bers, the small-scale motions cease to depend on the nature of the large-scale
flow, leading to the universality of small-scale motions discussed in Section 3.
Furthermore, these scales lose all directional orientation, in other words, they
become isotropic. The energy contained in the sub-inertial scales (discussed in
section 3) is characterized by what is usually referred to as the five — thirds

law. In other words, the energy at these scales behaves as k- 5/3
represents the inverse of the size of the scales.

In the up-coming sub-sections we try to simulate a flow which is nearly
isotropic at all scales. Qur results are compared to the experimental data
of Comte-Bellot and Corrsin [1], who tried to represent an infinite space of
isotropic motions decaying in time because of a lack of kinetic energy produc-
tion (in the absence of shear flows) to balance the viscous dissipation. They

, where k,
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accomplished this by obtaining a turbulence field behind a regular grid span-
ning a steady, uniform duct flow. By moving at the speed of the mean flow
behind the grid, they correctly surmised that an observer would see something
like true isotropic turbulence evolving in time.

6.2 Numerical observations

As can be seen in the dynamic Smagorinsky model, the filtered velocity field
@ depends on the ratio A/A. The primary filter kernel, G, appears implicitly
in the equations, while the kernel G appears explicitly when computing the
dynamic model. Essentially, the primary filter kernel as well as the kernel G
are arbitrary, yet their widths appear in the Smagorinsky model. Customarily,
A is given by the mesh spacing in a hexahedral mesh simulation:

A = (hihohs)'/® (38)
or, in the case of elements with high aspect ratios,
A =maX(h1,h2,h3), (39)

where h; is the mesh spacing in the i-th direction. The idea behind these
choices is that they characterize the scales at the resolution threshold of the
rpesh. In reality, when the filtered equations are discretized, A as well as
A become dependent upon the numerical method of choice coupled with the
effectiveness (or ineffectiveness) of the dynamic model, the mesh spacing, and
the polynomial order of the basis functions used in the stabilized Galerkin
approximation, which together act as the primary filter. In other words, A in
(38) is perturbed in the form

A = € (hyhohs)'/3, (40)

where € =~ 1 is a constant depending on the numerical method, the model, the
mesh, and the polynomial order of the basis functions underlying the method.
Thus, we are left with a difficult question: How can we evaluate A and A
correctly? More precisely, how can we compute the ratio A/A correctly? In
section 4, we showed how to calculate A for discrete test filters on a uniform
hexahedral mesh. Here we make use of this information in assuming that for a

hexahedral mesh X /3
ﬂze”(_m_m) , » (41)

where k is a positive constant and g is the filter width ratio (FWR). The
parameter x serves to characterize the unknown filter width A.

In the decay of isotropic turbulence, the scales of motion are isotropic and
vary over the same range everywhere in the domain. Periodicity can be as-
sumed in the three principal directions as long as the two-point spatial auto-
correlations of velocities over distances equivalent to the domain length vanish.
Given these characteristics of the flow in question, we can ascertain that for
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an evenly spaced hexahedral mesh with no p-refinement the numerical pro-
cedure resolves turbulent motions larger than a constant scale A. (Otherwise,
if we were to perform p-refinement or h-refinement in some regions of this
flow, the numerical procedure would resolve up to scales smaller than in other
regions, yielding a non-constant A) Moreover, A is constant as well because
we are using an evenly spaced mesh. Thus, A which depends on A and A, is
taken as constant. Now it should be clear that for decaying isotropic turbulence
simulated on an evenly spaced hexahedral mesh with no p-refinement, the ex-
pression in (41) is consistent in the sense that both of its sides are constants
throughout the flow domain.

To verify the validity of (41), we performed the simulation with two different
test filters on a fixed evenly spaced hexahedral mesh using continuous piecewise
linear basis functicns. For each case, the filter width ratio was expressed as:

% = n% and Rz =5 (42)
Here the subscript on the filter width denotes the first or second simula-
tion. Note that no distinction is made between the filters applied in dif-
ferent directions because we are dealing with an evenly spaced mesh (ie.,.
h = hi1 = hy = h3). Furthermore, no distinction is made for A between the
first and second simulations arguing that because the uniform mesh is fixed, A
remains constant as was discussed earlier. However, one might also argue that
because the test filter changes the numerical method changes as well, conse-
quently, A changes Later we will see that this is not the case as long as the test
filter widths, A; and Ay, are consistently calculated using (24). Thus, because
the constant & characterizes A, it remains constant as well from simulation to
simulation. In summary, we will see that both A and & are independent of the
test filter used as long as the test filter width is accurately computed.

When the simulation is performed with a uniform tetrahedral mesh, the
assumption made in (41) is not feasible because A is not well-defined. However,
we can measure the constant

|| D> D>»

B= (43)

for which the simulation performs well w1th respect to experimental data. Note
that the best value of B is particular to the test filter. Furthermore, in setting
(43) as a constant we have assumed that for an uniform tetrahedral mesh with
no p-refinemert, A is constant throughout the flow domain, as was discussed
earlier.

In the case of more complex flows, where the scales of motion might vary
from region to region, h-refinement and p-refinement are often employed to
improve local resolution. If these refinements are made, no longer are A, A,
and A constants over the domain; instead, they reflect the local mesh spacing
and local polynomial order. However, if we were to refine such that both sides
of (41) or the left hand hand side of (43) remain constants, the consistency
“of these expressions should hold, at least approximately. Their validity should
be verified. Furthermore, A and A should be varied slowly enough such that
they can be approximated as locally constant in the derivation of the dynamic
model.
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Energy spectras at t=98 using hexes, 1-pt. quad. on the filter, and 8-pt. quad. on the flow
10 T

Experimental Data

- -~ LES with FWR=sqrt(3)
———  LES with FWR=sqrt(2.25)

k
4

Figure 3: LES of decaying isotropic turbulence performed with hexahedral elements.
FWR (filter width ratio) = 8.

6.3 Numerical results

Two sets of simulations of decaying isotropic turbulence were performed using
an evenly spaced linear hexahedral mesh discretizing a cubic domain with sides
of length 27 and subjected to periodic boundary conditions in the three princi-
pal directions. The two sets are distinguished solely by a change in the discrete
test filter. In the first set, the test filter is taken as the box filter approximated
by one-point quadrature. In the second set, the test filter is taken as the box
filter approximated by eight-point quadrature.

The length of the mesh spacings was taken as h = 27/32, where 32 is the
number of space intervals in each direction. Furthermore, as mentioned earlier,
the results are compared to experimental data. However, since the results
are in terms of primary filtered variables (".e.. @), the experimental data used
for comparison should also be filtered. Tl filtering of the experimental data
should be of width A, however, since this value is not available to us, we picked
it to be O(h), specifically, A = h. :

6.3.1 Box filter on hexes approximated by one-point quadra-
ture

The first set of simulations was performed with the test, box filter approximated
by a one-point quadrature rule yielding a discrete filter of width A =3 h.
First, k in (41) was set to unity, yielding a filter width ratio 8 = V3. Then
k was set to any number, here taken as /9/ 12, yielding a filter width ratio
B = 1/9/4 = +/2.25. The results of this set of simulations are plotted in Figure
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Energy spectras at t=98 using hexes and 8-pt. quad. on the filter and the flow
10 T

Experimental Data

— - - LES with FWR=sqrt(4)
———  LES with FWR=sqrt(3)

r

E(k 1=98)

k

r

Figure 4: LES of decaying isotropic turbulence performed with hexahedral elements.

3.

6.3.2 Box filter on hexes approximated by eight-point quadra-
ture

The second set of simulations was performed using the test (or box) filter ap-
proximated by an eight-point quadrature rule, yielding a discrete filter of width
A = 2h. First, k was set to unity, yielding a filter width ratio 8 = V4. Then,
once again, x was reset to 1/9/12, yielding a filter width ratio 8 = V3. The
results of this set of simulations are plotted in Figure 4.

Looking at Figures 3 and 4, we see that results do not vary from simulation
to simulation as long as the test filter widths are consistently calculated using
(24). We ascertain that the test filter does not have an impact on the results
as long as its width is accurately represented. Furthermore, we ca.i say that
A remained constant from simulation to simulation as was assumes vefore and
that the parameter  strictly characterizes the unknown primary filter width A
independent of the test filter used. In addition, the ratio 3 scales as O(A/A)
for this problem and the parameter x can be adjusted so as to obtain preferable

results.

6.3.3 LES on tetrahedral elements

The simulation of decaying isotropic turbulence was also performed with uni-
form tetrahedral elements discretizing the domain discussed in the previous
paragraph. As mentioned earlier, a proper value of 3 in this case is not within
our means, thus we chose to keep this value fixed at V'3 for all simulations. How-
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Energy spectras at t=98 using tets with FWR=sqrt(3)
107 T

Experimental Data
-=-- LES w/ 1-pt. quad. on filter and flow
E— LES w/ 4—pt. quad. on filter and 1-pt. quad. on flow

f

E(k t=98)

k

r

Figure 5: LES of decaying isotropic turbulence performed with tetrahedral elements

and B = V/3.

ever, we varied the quadrature rule used to approximate the box filter and the
quadrature rule used to integrate the discretized flow equations (which alters
the numerical method). Although not shown in the figures, a slight variation
of B8 affects the energy spectra shown in Figures 5 and 6, thus a value of 8 can
be obtained such that the simulation nearly matches experimental results. In
the future we hope to arrive at a concrete way of calculating the best choice
for B. Of greater importance is that despite the possible non-homogeneity and
non-symmetry of the generalized box filter on tetrahedral elements, discrete
approximations of said filter are shown to work just as well as discrete ap-
proximations of the generalized box filter on hexahedral elements, for which
homogeneity and symmetry are well established.

6.3.4 An approximate least-squares projection

In Figure 7 we show results of the simulation performed with the least-squares
projection filter whose kernel appears in (37). This filter operator was ap-
proximated by lumping of the Gram (or mass matrix) and using one-point
quadrature. Here we have chosen 3 = /3, for which the simulation performed
well with hexahedral elements. Choosing 8 = v/4 produces even better results.
" However, in the future we would like to establish a rigorous way of how to
choose the appropriate value of 3. Although not shown, the simulation also
performed well with tetrahedral elements.
Note that in this simulation filtered functions where evaluated in the interior
of the elements, unlike the simulations performed with the discrete box filter in
which the filtered functions were evaluated at the mesh nodes. The reason for
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Energy spectras at t=98 using tets with FWR=sqrt(3)
10 T

Experimental Data
-- - LES w/ 1-pt. quad. on filter and 4—pt. quad. on flow
_— LES w/ 4-pt. quad. on filter and flow

k

T

Figure 6: LES of decaying isotropic turbulence performed with tetrahedral elements

and 8 = V3.

this variation is that the least-squares filter operator under the lumping and
one-point quadrature approximations reduces to the box kernel approximated
by one-point quadrature when both are used at the mesh nodes.

6.4 Initial conditions and implementational details

Experimental data is available from [1], however, it is not enough to create a
fully turbulent initial condition for the simulations. From the data we were
able to obtain the correct amplitudes of the flow velocities in wavenumber
space at two dimensionless time stations, namely ¢ = 42 and ¢t = 98. As an
approximate initial condition we used the experimental velocity amplitudes at
t = 42, at discrete points in wavenumber space corresponding to discrete points
in real space; the corresponding phases where assigned random numbers. These
velocities where then used to compute a pressure field satisfying the Poisson
equation for pressure in wavenumber space. The inverse Fourier transform
was used to obtain real initial conditions. However, these initial conditions
were not appropriate due to the random phases assigned to the velocities. The
simulation was run for a couple of hundreds time steps. The resulting velocities
where then transformed back to wavenumber space and their phases extracted
and re-assigned as the phases of the experimental velocity amplitudes at ¢ = 42.
The simulation was re-run until iterations of the procedure previously outlined
produced the same results, signaling that an appropriate (fully turbulent) initial
condition had been obtained.

As was mentioned earlier, the finite element solver employed uses the Stream-
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Energy spectra at t=98 using hexes and the approx. Lz—projection filter
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Figure 7: LES of decaying isotropic turbulence using an approximation of the least-
squares (L) projection as the test filter and § = V3.

line Upwind Petrov-Galerkin (SUPG) method. The large eddy-simulations in
this report were performed using incompressible (see [18]) and compressible
(see [4]) versions of the solver. The compressible simulations were performed
with a Mach number much less than unity in order for the flow to approach
incompressibility. Furthermore, the compressible solver was used in its incom-
pressible limit. Results from both of the cases using the compressible solver
matched the results of the incompressible solver.

For clarity issues, in this report the dynamic Smagorinsky model was derived
in its incompressible form. For compressible flows the Smagorinsky model varies
slightly. The interested reader is encouraged to consult {10] for a derivation of
the compressible version of the model. This compressible version reduces to
the incompressible form by setting density equal to a constant.

6.5 Conclusions

Large-eddy simulation using a dynamic residual stress model proved to be suc-
cessful when extended to unstructured meshes using a generalized box filter as
the test filter. Simulation results were shown to be independent of the test filter
provided the test filter width is consistently represented. We hope to further
validate the role of the parameter k, characterizing the unknown primary filter
width, by performing the simulation on finer meshes. Furthermore, possible
alternative filters to the generalized box filter were introduced. These finite
dimensional filters, based on continuous piecewise polynomial approximations
and least-squares projections, would be preferred for higher order large-eddy
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L1 L2

Figure 8: Schematic for a discrete approximation to a box filtered function.

simulations on coarse meshes. In the near future we hope to estimate the
homogeneity of the generalized box filter and the finite dimensional filters.

7 Appendix I

Here we will show some calculations done when computing a box filtered func-
tion using the well known 2-point Gaussian quadrature rule. Consider the
schematic in figure 8 as we set out to obtain the filtered function f evaluated
at node Aor 0. Here z4 — 241 = Za4+1 —Ta=h, Ly =h-o; = h-0.211 and
Lo ="h-ay = h-0.788 Thus, we have

2
Flza) = f(z0) = > Wif(zi), (44)

i=-2

where W; = 1/4 for all 5. This discrete filter yields a filter kernel of the form

2
Glz—y)=h z Wid(z — y + o). (45)

i=—2

Inserting the values for W; and «o; with J = 2 into the expression in (24) we
find that the width of the filter kernel in (45) is A = 2h.
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